在本文中,我们的目标是在测试时调整预训练的卷积神经网络对域的变化。我们在没有标签的情况下,不断地使用传入的测试批次流。现有文献主要是基于通过测试图像的对抗扰动获得的人工偏移。在此激励的情况下,我们在域转移的两个现实和挑战的来源(即背景和语义转移)上评估了艺术的状态。上下文移动与环境类型相对应,例如,在室内上下文上预先训练的模型必须适应Core-50上的户外上下文[7]。语义转移对应于捕获类型,例如,在自然图像上预先训练的模型必须适应域网上的剪贴画,草图和绘画[10]。我们在分析中包括了最近的技术,例如预测时间批归一化(BN)[8],测试熵最小化(帐篷)[16]和持续的测试时间适应(CottA)[17]。我们的发现是三个方面的:i)测试时间适应方法的表现更好,并且与语义转移相比,在上下文转移方面忘记了更少的忘记,ii)帐篷在短期适应方面的表现优于其他方法,而Cotta则超过了其他关于长期适应的方法, iii)bn是最可靠和强大的。
translated by 谷歌翻译
实验数据的获取成本很高,这使得很难校准复杂模型。对于许多型号而言,鉴于有限的实验预算,可以产生最佳校准的实验设计并不明显。本文介绍了用于设计实验的深钢筋学习(RL)算法,该算法通过Kalman Filter(KF)获得的Kullback-Leibler(KL)差异测量的信息增益最大化。这种组合实现了传统方法太昂贵的快速在线实验的实验设计。我们将实验的可能配置作为决策树和马尔可夫决策过程(MDP),其中每个增量步骤都有有限的操作选择。一旦采取了动作,就会使用各种测量来更新实验状态。该新数据导致KF对参数进行贝叶斯更新,该参数用于增强状态表示。与NASH-SUTCLIFFE效率(NSE)指数相反,该指数需要额外的抽样来检验前进预测的假设,KF可以通过直接估计通过其他操作获得的新数据值来降低实验的成本。在这项工作中,我们的应用集中在材料的机械测试上。使用复杂的历史依赖模型的数值实验用于验证RL设计实验的性能并基准测试实现。
translated by 谷歌翻译